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The main goal of this project is to assess and how passive mi brightness ’ i
values relate to particular hydrometeor types. The hydrometeor types are taken from dual polarization radar Notes on Methodology: % Hail % Hail
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Combining information from multiple channels
For brightness in individual channels, brightn i between selected channels, and for multi-dimensional combinations of helps distinguish which particle types should be
channels, we compute the P ility of a given type being present. Calculations are conditioned on precipitation being identified by the ground radar. 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
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Currently the analyses are framed in terms of brightness temperatures being reduced due to particle scattering. . .
Color shading: Probability of hail. % Hail % Hail
o 183:7 - 183+3 GHz o 166 GHz V 0 89 GHz PCT Dashed, white contours: Probability of graupel, without hail. 80 T T T 80 T T T T T T
— — Solid, pink contours: Probability of Snow / Aggregates without - -
sl ] .gz‘s&n 9, sl ] 4 .\ng,g;v; s Contour intervals: 20% < <
iz HiN = =
Increasing 10-19 GHz PCT difference, decreasing (183+-7 - & 40 4
> o 1 L o 1 N 1 183+/-3) difference, and decreasing TB or PCT in other channels all o
H H H suggest hail. So hail is favored in the upper parts of plots, and the & o[- <]
g £ g leftward parts of plots. 2 2
2 Y ] ]
) ) ° °
For a given low brightness temperature (leftward parts of plots), the — O -
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The highest frequencies have strong sensitivity to graupel, and some sensitivity to and hail. The likelihood of graupel occurrence — whether high or low density | The distinction between graupel and snow/aggregates appears to be 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
— rapidly increases with ing brightness or with the diff between (183+/-7 GHz — 183+/-3 GHz) channels becoming increasingly negative. pretty well made by the TB or PCT in the higher frequency Frequency (%) Frequency (%)
A strong signature in the (183+/-7 - 183+/-3) difference indicates that graupel is present, but does not particularly distinguish between low density graupel, high density graupel, | channels (left-right separation between dashed and solid contours in
and hail. The lowest brightness temperatures at 166 GHz and 89 GHz indicate about a 3/4 chance of hail being present, but about a 1/4 likelihood the signal results from graupel | these plots). Similar plots using high frequency channels for both
without hail. axes (instead of including 10 & 19 GHz) may help refine that
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The 37- and 19-GHz frequencies have strong sensitivity to hail, with sensitivity to other hydrometeor types appearing to be mostly coincidental. This is not necessarily hail 166 GHz V (K) 166 GHz V (K)
reaching the surface, but hail somewhere in the vertically slanted column. The hydrometcor identification does not distinguish hail size. A likelihood of graupel does increase | These separations suggest that the % Hail . i . .
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as an empirical result.
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Radiative Transfer Modeling Overview KFWS Reflectivity ot 4.0 km KFWS HID ot 4.0 km —99 —98 —99 =98
* GMI TBs were simulated using the Atmospheric Radiative Transfer c;. —99.50 ~95 —98.50 98 —97.50 707‘42- =99.50 99 _95.80 295 297,50 97 |
Simulator over a case of severe hail near the Dallas/Ft. Worth WSR-88D & & &
(KFWS) on 26 May 2015. " B N b 3
 In the hydrometeor classification algorithm, a score is assigned to each kS 3
possible hydrometeor type based on how well that type fits the o o
polarimetric measurements. g I afl )
 For calculating the particle size distributions (PSDs) of each hydrometeor " ="
type for the simulations, those scores are treated as representing the = =)
relative contribution to total radar reflectivity (Zh) from each hydrometeor - ol S ~5%
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scores of 6 from hail, 4 from high-density graupel, and 0 from everything " A - . - —98 - 9 8
else, we treat that grid box as having 6 x 10* mmS/m? (48 dBZ) from hail 9950 799 ;925:2)_98 TR0 9T 9980 99 —98:;[()) 9T
and 4 x 10* mm®m? (46 dBZ) from high-density graupel. . —— N I
* The normalized gamma distribution was used as the form of the PSD of 010 Db ab Sh e D2 RNCIG AGWS LG HG HL ED b /B
each. hydlrometeor type which has three parameters: intercept parameter, (Above) a.) Gridded reflectivity and b.) the associated hydrometeor
median diameter, and shape parameter. , identification from KFWS valid 2225 UTC 26 May 2015 at a height of 4
¢ The median diameter (D,) and shape parameter were specified for each km. Al b

simulation. The intercept parameter was then calculated such that the
resulting calculated Zh matched that apportioned to each hydrometeor type

The hydrometeor t drizzle (DZ), rain (RN), i tals (IC),
described above. Thus, all simulations were performed under the e hydrometeor types are drizzle (DZ), rain (RN), ice crystals (IC)

int of h aggregates (AG), wet snow (WS), vertically-aligned ice (VI), low-density —99 =
constraint of constant mass or Zh. . ) i graupel (LG), high-density graupel (HG), hail (HL), and big drops (BD). c. GMI 36.6—-GHz BT f.
There are 2 specific goals of these simulations: A better understanding of The black cross indicates the location of the radar. ) —98

1.) how simulated GMI TBs respond to changing PSD parameters under

conditions of fixed mass and 2,) how low would BT be expected to | gy he simulations, DZ and RN, IC and VI, and AG and WS are combined
achieve from realistic (albeit extreme) particle sizes or concentrations. into 3 categories
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(Ab‘{ve) Scatterplot of S'm“m?d TBs from IC_INC_DO (D, = 0.4 mm (Above) Scatterplot of simulated TBs from HG_INC_DO (D, = 4.5 mm
for ice) as a function of simulated TBs from M_HYD (control for HG) as a function of simulated TBs from M_HYD (D, = 2.5 mm for

simulation; D, = 0.2 mm for ice) valid at various frequencies (all
horizontally polarized except 183 GHz). The correlation coefficient (r),
bias, and root-mean-square error (rmse) are given in the bottom-right

comer of each panel. Sample size is given in the top-left corner of each Increasing D, (reducing concentrations) of HG has little impact at 10 and
panel. 18 GHz, but results in less scattering at 36-183 GHz.

HG) valid at various frequencies. Only pixels that sample HG are
included here (sample size is given in the top-left corner of each panel).
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Increasing D, (reducing concentrations) of ice crystals under fixed mass
results in warmer TBs at the 2 highest frequencies and little effect at
other frequencies.

Changing PSD of LG, snow, and liquid hydrometeor types appears to
have little effect at any frequency, but this may be due to the presence of
other more dominant hydrometeor species.
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